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1 The basic problem

• Interactions are believed to be local

• Properties of objects change due to their immediate environ-

ment

• Example(s):

– In many mechanical problems the acceleration a of an object

is determined by its surroundings

– Its surroundings are determined by the objects’ position r.

– There is then a formula

a = f(r)

– The acceleration is the rate of change of the velocity a = v̇
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– The velocity is the rate of change of position, v = ṙ

– Then a = r̈ and

r̈(t) = f (r(t))

which is a differential equation:

A differential equation is a relation
between the derivatives of a function
and the function itself
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– Example(s): For a spring that can move only along the x

direction, f(r) = −ω2x(r)x̂ and the equation becomes

(ẍ(t), ÿ(t), z̈(t)) =
−ω2x(t), 0, 0



or, in coordinates

ẍ = −ω2x ÿ = 0 z̈ = 0

– In other cases the acceleration depends on where the particle

is and where it will be shortly thereafter, that is it depends

on v and r: a = F(r,v), or

r̈(t) = F (r(t), ṙ(t))
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• In most mechanical problems only a, v and r appear in a

differential relation

• In other situations other derivatives of different order can ap-

pear.

Example(s):

– Radioactive decay: the change in the number of nuclei N(t)

depends linearly on the number of nuclei:

Ṅ = a + bN

– Electrostatics in one dimension: the electric field is the

derivative of the electrostatic potential

E = −dφ

dx
where φ is assumed to be known.
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• These differential equations have a parameter, the solutions are

functions of a parameter, the maximum number of derivatives

with respect to the parameter is called the order of the equation:

Equation parameter solution order

ẍ = −kx t x(t) 2
E = −dφ/dx x E(x) 1
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1.1 Partial differential equations

• Sometimes the quantity of interest depends on more than one

parameter.

• Example(s):

– The temperature in a room T depends on the position and

the time (4 parameters)

– The density of gas n diffusing through a container depends

on position and time

• In this case differential equations involve the partial derivatives

of the function
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• Example(s): diffusion in one dimension

– The change in the concentration at one location x, ∂tn(x, t)

depends on how large n is in nearby locations: if n(x±ξ, t) =

n(x, t) there will be little diffusion.

– Using a Taylor expansion

n(x± ξ, t) = n(x, t)± ξ∂xn(x, t) +
1

2
ξ2∂2

xn(x, t) + · · ·

the avg. excess particle density near x is then (approx.)

1

2
[n(x + ξ, t) + n(x− ξ, t)]− n(x, t) =

1

2
ξ2∂2

xn(x, t)

– Reasonable to expect that this is proportional to ∂tn(x, t).

The final equation is

∂tn(x, t) = C∂2
xn(x, t)
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• As in the previous case a solution is an explicit function that

when substituted into the equation yields and identity.
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2 The solution

Solving a differential equation im-
plies finding a specific function
that identically satisfies the equation
when substituted into it

Important: in this section I will
just give solutions, later I will show
one one gets the solutions!
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Example(s): the harmonic oscillator in 1 dimension

• Differential equation:

ẍ = −ω2x

• Proposed solution:

x = A cos(ωt) + B sin(ωt)

with A, B constants. Explicitly,

ẋ = −ωA sin(ωt) + ωB cos(ωt)

ẍ = −ω2A cos(ωt)− ω2B sin(ωt)

⇒ ẍ = −ω2x

So the proposed solution is a solution
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• Note that the solution has two undetermined constants A and

B.
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2.1 Partial differential equations

Similarly for a partial differential equation a solution is a function

of all the independent parameters.

Example(s):
∂2

t − c2∂2
x

 f (t, x) = 0

where c is a constant; this is called the wave equation in 1 spatial

dimension.

• A simple solution is

f = x− ct

• Another simple solution is f = (x− ct)2:

∂xf = 2(x− ct)
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∂2
xf = 2

∂tf = −2c(x− ct)

∂2
t f = 2c2

⇒
∂2

t − c2∂2
x

 f = 2c2 − 2c2 = 0

• In fact f = (x− ct)n is also a solution

•Moreover any linear combination of solutions is also a solution

A differential equation is linear if
only linear combination of solutions
is also a solution
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• The wave equation is linear, therefore

f (x, t) =
∑

an(x− ct)n

is a solution.

• But F (u) = ∑
n anun is an arbitrary function. The general

solution to the wave equation is

f (x, t) = F (x− ct)

where F is an arbitrary function

The general solution to a partial dif-
ferential equation has one or more ar-
bitrary functions
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• The undetermined functions are also fixed by the initial condi-

tions. In this case t = 0 we need to specify f (x, t = 0) = f0(x),

then using the general solution for these initial conditions gives

F (x) = f0(x)

so that the complete solution for the desired initial conditions

is

f0(x− ct)
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3 Finding solutions

Most physics problems are represented in terms of differential

equations.

Example(s): :

• All of classical mechanics is described in terms of Newton’s

second law

ṗa = Fa (r1, . . . rN ;p1, . . .pN ) ; a = 1, . . . N

pa =
d(mara)

dt
which are 3N coupled, non-linear (in general) ordinary differ-

ential equations
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• All of electromagnetism is contained in Maxwell’s equations

∂Ex

∂x

 +


∂Ey

∂y

 +


∂Ez

∂z

 = ρ


∂Bx

∂x

 +


∂By

∂y

 +


∂Bz

∂z

 = 0


∂By

∂z

 −

∂Bz

∂y

 =


∂Ex

∂t

 + Jx and cyclic perms.


∂Ey

∂z

 −

∂Ez

∂y

 = −

∂Bx

∂t

 and cyclic prems.

which are 8 linear partial differential equations for theelectric

and magnetic fields E and B in terms of the current J and

charge density ρ.
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• The non-relativistic Schrödinger equation for a single particle

moving in 3 dimensions

− h̄2

2m

∂2
x + ∂2

y + ∂2
z

 Ψ + V (r)Ψ = ih̄Ψ

which (with its generalization to the case of many particles)

described all of microphysics at low energies. It can also be

generalized to include all relativistic effects

So, solving these differential equations would tell us how things

behave. Because of this enormous effort has been devoted to un-

derstanding when there are solutions, and how to obtain them.

By now there are standard methods.
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3.1 Equations of the first order

• Simplest form:

ẋ = ax n′ = bn

with a, b constants. This is a first order ordinary differential

equation with constant coefficients

• To solve such equations,

dn

dx
= bn ⇒ 1

n

dn

dx
= b

dx

dx

d ln n

dx
= b

dx

dx
⇒ d(ln n− bx)

dx
= 0

ln n− bx = A = const
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⇒ n = exp(A + bx) = eAebx

• Note that the solution has one undetermined constant (A)

• Solutions to second-order ordinary differential equations in gen-

eral have two undetermined constants

• Solutions to an l-th order ordinary differential equation (linear

or not) in general have l undetermined constants

• The solution with the maximum number of undetermined con-

stants left undetermined is called the general solution

• Undetermined constants are fixed by the initial conditions.
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Example(s): solve n′ = bn with n(x = 0) = n0

– The general solution is

n(x) = eAebx

– At x = 0 the general solution equals n(x = 0) = exp A.

– For the initial conditions to be satisfied we must have eA =

n0

– The solution with the desired boundary conditions is

n = n0e
bx
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• Note: not all boundary conditions specify the undetermined

constants. For example, solve n′ = bn where b > 0, with

n(x = −∞) = 0

– The general solution is, as before n = exp(A + bx)

– As x → −∞ the right hand side → 0 for any A

– The initial conditions do not specify A

• Sometimes it is impossible to satisfy the initial conditions.
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Example(s): solve n′ = bn with n(x = −∞) = n0 6= 0

– The general solution is, as before n = exp(A + bx)

– As x → −∞ the right hand side → 0 for any A

– One cannot have n(−∞) 6= 0

• One can have systems of equations also, for example

ẋ = ωy, ẏ = −ωx

• Often one can turn this into solving a single ordinary differen-

tial equation, but of a higher order.
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Example(s):

ẋ = ωy, ẏ = −ωx ⇒

y =
1

ω
ẋ ⇒ ẏ =

1

ω
ẍ = −ωx

ẍ = −ω2x

then one solves the second order equation ẍ + ω2x and then

finds y from y = ẋ/ω
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• Note that the solution to a system of two first-order equations

has the same number of undetermined constants as a single

second-order equation.

• This is true in general: a system of l first-order equations will

have a solution containing l undetermined parameters.
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3.2 First order equations

All ordinary differential equations are equivalent to a system of

first-order equations.

• Start from

dnf

dxn = F

dn−1f

dxn−1 ,
dn−2f

dxn−2 , . . .
df

dx
, f



• Define

yk =
dkf

dxk

• Then
dyk

dx
=

dk+1f

dxk+1 = yk+1
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• Then,

df

dx
= y1

dy1

dx
= y2

dy2

dx
= y3

· · · · · · · · ·

dyn−2

dx
= yn−1

dyn−1

dx
= F(yn−1, yn−2, . . . , y1, f)
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• Example(s):

ẍ + ω2x = 0

for which n = 2. I will define y = ẋ, then

ẋ = y

ẏ = −ω2x

and can be written in matrix form
d

dt

 x
y

 =

 0 1
−ω2 0


 x
y


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• A generic linear ordinary differential equation can also be writ-

ten in matrix form

dnf

dxn = a1
dn−1f

dxn−1 + a2
dn−2f

dxn−2 + · · · + an−1
df

dx
+ anf

then if

yk =
dkf

dxk , y0 = f

I have

d

dx



yn−1

yn−2
...
y2

y1

y0


=



a1 a2 · · · an−2 an−1 an

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0





yn−1

yn−2
...
y2

y1

y0


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• The general form of an n-order linear ordinary differential

equation is
dv

dx
= Mv

where v is an n-dimensional vector function of x and M is an

matrix.
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• if M happens to be diagonal then it is easy to solve the equa-
tion:

d

dx



vn

vn−1
...
v3

v2

v1


=



mn 0 · · · 0 0 0
0 mn−1 · · · 0 0 0
...

...
...

...
0 0 · · · m3 0 0
0 0 · · · m2 0
0 0 · · · 0 m1





vn

vn−1
...
v3

v2

v1



Then

v′k = mkvk

with solutions

vk = Ake
xmk

where A1, a2, . . . , An are the n undetermined constants to be

fixed by some initial conditions.
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• Now, many square matrices M can be diagonalized:

M = S−1mS

where S is some constant invertible matrix, and m is a diagonal

matrix. Now, let

w = S−1v ⇒ v = Sw

then

dw

dx
=

dS−1v

dx
= S−1 dv

dx︸ ︷︷ ︸
=Mv

= S−1Mv = S−1MSw = mw
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Then

wk = Ake
x mk,

vl =
N∑

k=1
Slkwk =

N∑
k=1

SlkAke
x mk

Solving a linear differential equation
of the form

v̇ = Mv

with M constant is trivial provided
M can be diagonalized
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• Example(s):

ẍ + ω2x = 0

for which n = 2. I will define y = ẋ, then

ẋ = y ẏ = −ω2x

and can be written in matrix form

v̇ =
d

dt

 x
y

 =

 0 1
−ω2 0


 x
y



Now diagonalize the matrix. The general form of S is

S =

 a b
c d

 ⇒ S−1 =
1

ad− bc

 d −b
−c a



then

SMS−1 =
1

ad− bc

 a b
c d


 0 1
−ω2 0


 d −b
−c a


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=
1

ad− bc

 a b
c d


 −c a
−ω2d ω2b



=
1

ad− bc

−ac− ω2bd a2 + ω2b2

−c2 − ω2d2 ac + ω2bd



Now, for this to be diagonal,

a2 + ω2b2 = 0 c2 + ω2d2 = 0

with solutions

a = ±iωb, c = ±iωd ⇒ ad− bc = 0

or

a = ±iωb, c = ∓iωd ⇒ ad− bc = ±2iωbd
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The first case does not work, so I use the second:

SMS−1 =
1

±2iωbd

−2ω2bd 0
0 2ω2bd



=

±iω 0
0 ∓iω



I can choose either sign (I will use the first) then

m1 = iω, m2 = −iω

So the solution for the w is

w1 = A1e
iωt w2 = A2e

−iωt
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so that

v = Sw

=

 iωb b
−iωd d


 A1 exp(iωt)
A2 exp(−iωt)



=

 iωbA1 exp(iωt) + bA2 exp(−iωt)
−iωcA1 exp(iωt) + cA2 exp(−iωt)



⇒ x = v1 = iωbA1 exp(iωt) + bA2 exp(−iωt)

= b(iωA1 + A2)︸ ︷︷ ︸
=B′

cos(ωt)+

+ b(iωA1 − A2)︸ ︷︷ ︸
=A′

sin(ωt)

= A′ sin(ωt) + B′ cos(ωt)
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3.3 Partial differential equations

These are harder so solve. I will just talk about one procedure:

separation of variables.

• For a partial differential equation with parameters x, y try out

a solution os the form X(x)Y (y).
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• Example(s): the equation

(∂2
x + ∂2

y)φ = 0

known as Laplace’s equation in 2 dimensions.

– I guess:

φ(x, y) = X(x)Y (y)

and substitute, I get

Y
d2X

dx2 + X
d2Y

y2 = 0
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– Divide by XY :
1

X

d2X

dx2 = − 1

Y

d2Y

y2

– Since the left hand side is independent of y while the right

hand side depends only on y I must have

1

X

d2X

dx2 = − 1

Y

d2Y

y2 = C

where C is a constant.

– Assume, for example that C = −k2, then

d2X

dx2 = −k2x
d2Y

dy2 = k2Y
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– The solutions are

X = A cos(kx) + B sin(kx)

Y = aeky + be−ky

so that the solution becomes

φspec = (A cos(kx) + B sin(kx))
aeky + be−ky



where ”spec” indicates this is a special solution.

– But what is k? It is completely undetermined! But for each

k we have a solution with its constants A, B , a and b, so

these are functions of k:

φspec(x, y; k) = [A(k) cos(kx) + B(k) sin(kx)]
a(k)eky + b(k)e−ky


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– Since the equation is linear a linear combination of solutions

is also a solution

u(k1)φspec(x, y; k1) + v(k2)φspec(x, y; k2)

– I can then add an arbitrary number of solutions with arbi-

trary prefactors, or, since k is a continuous variable,
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φ(x, y) =
∫
dk u(k)φspec(x, y; k)

=
∫
dk u(k) [A(k) cos(kx) + B(k) sin(kx)]

a(k)eky + b(k)e−ky


=
∫
dk

[
Ã(k) cos(kx) + B̃(k) sin(kx)

] ã(k)eky + b̃(k)e−ky


=
∫
dkeky

{
ã(k)

[
Ã(k) cos(kx) + B̃(k) sin(kx)

]

+ b̃(−k)
[
Ã(−k) cos(kx)− B̃(−k) sin(kx)

]

=
∫
dkeky [A(k) cos(kx) + B(k) sin(kx)]

where Ã = uA, etc. and I used the fact that cos is even in

its argument while sin is odd.
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This is the general solution, it depends on 2 arbitrary func-

tions A,B.

– Writing out the trigonometric in terms of exponentials it is

easy to see that the general solution is of the form

φ = Φ+(y + ix) + Φ−(y − ix)

where Φ± are arbitrary functions
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• Example(s): : the equation
∂2

t − c2∂2
x

 f = 0

(the wave equation in one space dimension).

– I guess f (x, t) = X(x)T (t)

– As before this implies

1

X
X ′′ =

1

c2T
T̈ = −k2
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– the solutions are

X = A sin(kx) + B cos(kx)

= A′eikx + B′e−ikx

T = a′eikct + b′e−ikct

fspec = A′b′eik(x−ct) + B′a′e−ik(x−ct)

+A′a′eik(x+ct) + B′b”e−ik(x+ct)
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The general solution is (A′ and all the other constants are

functions of k),

f (x, t) =∫
dk u(k)

A′b′eik(x−ct) + B′a′e−ik(x−ct)

+A′a′eik(x+ct) + B′b′e−ik(x+ct)

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Let

F−(ξ) =
∫
dk u(k)

A′b′eikξ + B′a′e−ikξ


F+(ξ) =
∫
dk u(k)

A′a′eikξ + B′b′e−ikξ


then the general solution is

f (x, t) = F−(x− ct) + F+(x + ct)

It can be shown that most decent functions can be repre-

sented in the same form as F± so these are quite arbitrary.
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